论文标题

阿尔茨海默氏病中[N]生物标志物的网络引导的反应扩散模型

A Network-Guided Reaction-Diffusion Model of AT[N] Biomarkers in Alzheimer's Disease

论文作者

Zhang, Jingwen, Yang, Defu, He, Wei, Wu, Guorong, Chen, Minghan

论文摘要

目前,许多关于阿尔茨海默氏病(AD)的研究正在研究从神经图像中获取β-淀粉样蛋白(A),病理学TAU(T)和神经变性([N])生物标志物背后的神经生物学因素。但是,这些神经病理负担如何促进神经退行性的系统级机制以及为什么AD表现出特征进展的原因很大程度上是难以捉摸的。在这项研究中,我们结合了系统生物学和网络神经科学的力量,以了解从空前数量的纵向淀粉样蛋白PET扫描,MRI成像和DTI数据中[N]生物标志物的动态相互作用和扩散过程。具体而言,我们开发了一个网络引导的生物化学模型,以联合(1)对每个大脑区域的[N]生物标志物的相互作用进行建模,并且(2)表征它们在结构脑网络中整个纤维途径上的传播模式,在该纤维途径中,大脑弹性也被视为认知能力下降的调节剂。我们的生化模型提供了更大的数学见解,可以通过研究系统动态和稳定性来了解AD进展的生理病理学机制。因此,深入的系统级分析使我们能够对如何在整个大脑中散布,捕获认知能力下降的早期迹象并预测临床前阶段的AD进展。

Currently, many studies of Alzheimer's disease (AD) are investigating the neurobiological factors behind the acquisition of beta-amyloid (A), pathologic tau (T), and neurodegeneration ([N]) biomarkers from neuroimages. However, a system-level mechanism of how these neuropathological burdens promote neurodegeneration and why AD exhibits characteristic progression is largely elusive. In this study, we combined the power of systems biology and network neuroscience to understand the dynamic interaction and diffusion process of AT[N] biomarkers from an unprecedented amount of longitudinal Amyloid PET scan, MRI imaging, and DTI data. Specifically, we developed a network-guided biochemical model to jointly (1) model the interaction of AT[N] biomarkers at each brain region and (2) characterize their propagation pattern across the fiber pathways in the structural brain network, where the brain resilience is also considered as a moderator of cognitive decline. Our biochemical model offers a greater mathematical insight to understand the physiopathological mechanism of AD progression by studying the system dynamics and stability. Thus, an in-depth system-level analysis allows us to gain a new understanding of how AT[N] biomarkers spread throughout the brain, capture the early sign of cognitive decline, and predict the AD progression from the preclinical stage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源