论文标题
动力重力编织虫洞几何形状
Kinetic gravity braiding wormhole geometries
论文作者
论文摘要
最近提出了一类有趣的标量调整模型,该模型用动力学重力编织(KGB)表示。这些模型包含标量场的第二个衍生物的相互作用,这些相互作用不会带来额外的自由度和表现出特殊的特征,例如标量$ ϕ $和张量动力学$ x $项的基本混合。在这项工作中,我们认为虫洞的几何形状是由克格勃理论所维持的。更具体地说,我们以静态和球形对称的蠕虫背景介绍了完整的重力场方程,并概述了蠕虫喉咙处的一般约束,这是由于爆发的条件所施加的。此外,我们通过考虑特定的KGB因子选择来提出大量的分析和数值虫洞溶液。该分析明确表明,KGB理论表现出丰富的虫洞几何形状结构,范围从渐近平坦的溶液到渐近的抗DE安静时间。
An interesting class of scalar-tensor models, denoted by kinetic gravity braiding (KGB), has recently been proposed. These models contain interactions of the second derivatives of the scalar field that do not lead to additional degrees of freedom and exhibit peculiar features, such as an essential mixing of the scalar $ϕ$ and tensor kinetic $X$ terms. In this work, we consider the possibility that wormhole geometries are sustained by the KGB theory. More specifically, we present the full gravitational field equations in a static and spherically symmetric traversable wormhole background, and outline the general constraints at the wormhole throat, imposed by the flaring-out conditions. Furthermore, we present a plethora of analytical and numerical wormhole solutions by considering particular choices of the KGB factors. The analysis explicitly demonstrates that the KGB theory exhibits a rich structure of wormhole geometries, ranging from asymptotically flat solutions to asymptotically anti-de Sitter spacetimes.