论文标题

视觉对象跟踪中的硬闭塞

Hard Occlusions in Visual Object Tracking

论文作者

Kuipers, Thijs P., Arya, Devanshu, Gupta, Deepak K.

论文摘要

视觉对象跟踪是计算机视觉中最严重的问题之一,因为跟踪器必须处理许多具有挑战性的情况,例如照明变化,快速运动,遮挡等。根据其在最近的跟踪数据集上的性能(例如,dot2019和lasot)评估了跟踪器。我们认为,虽然最近的数据集包含大量带注释的视频,在某种程度上,这些视频为训练数据提供了很大的带宽,但诸如遮挡和平面旋转之类的硬情况仍然不足。为了使跟踪器更接近现实世界情景并部署在安全至关重要的设备中,即使是最稀有的硬情况也必须正确解决。在本文中,我们特别关注硬性闭塞案例,并基于对其最新的跟踪器(SOTA)的表现进行基准测试。我们创建了一个小规模的数据集,该数据集包含在硬阻塞中评估所选跟踪器的硬闭合中的不同类别。结果表明,对于SOTA跟踪器来说,硬闭合仍然是一个非常具有挑战性的问题。此外,观察到跟踪器的性能在不同类别的硬闭合之间差异很大,其中一个类别的表现最佳跟踪器在不同类别上的表现明显差。基于特定类别的跟踪器性能的不同性质表明,使用平均单个性能得分的共同跟踪器排名不足以在现实世界中的跟踪器性能。

Visual object tracking is among the hardest problems in computer vision, as trackers have to deal with many challenging circumstances such as illumination changes, fast motion, occlusion, among others. A tracker is assessed to be good or not based on its performance on the recent tracking datasets, e.g., VOT2019, and LaSOT. We argue that while the recent datasets contain large sets of annotated videos that to some extent provide a large bandwidth for training data, the hard scenarios such as occlusion and in-plane rotation are still underrepresented. For trackers to be brought closer to the real-world scenarios and deployed in safety-critical devices, even the rarest hard scenarios must be properly addressed. In this paper, we particularly focus on hard occlusion cases and benchmark the performance of recent state-of-the-art trackers (SOTA) on them. We created a small-scale dataset containing different categories within hard occlusions, on which the selected trackers are evaluated. Results show that hard occlusions remain a very challenging problem for SOTA trackers. Furthermore, it is observed that tracker performance varies wildly between different categories of hard occlusions, where a top-performing tracker on one category performs significantly worse on a different category. The varying nature of tracker performance based on specific categories suggests that the common tracker rankings using averaged single performance scores are not adequate to gauge tracker performance in real-world scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源