论文标题

有效的影响在具有顺序播种的时间网络中传播

Effective Influence Spreading in Temporal Networks with Sequential Seeding

论文作者

Michalski, Radosław, Jankowski, Jarosław, Bródka, Piotr

论文摘要

在许多应用领域中,网络中影响力的传播是一个非常重要的话题。例如,人们想最大程度地提高覆盖范围,限制营销活动初始化的预算,并利用社会影响力的潜力。为了应对这一挑战,十多年前,研究人员开始研究影响最大化问题。面临的挑战是找到最初激活的种子节点的最佳集合,以最大程度地提高网络中的影响。在典型的方法中,我们将在过程开始时在单阶段激活所有种子,而在这项工作中,我们介绍并评估了一种基于顺序播种的时间网络中种子激活的新方法。该方法没有同时激活所有节点,而是分布种子的激活,从而导致较高的影响力扩散范围。使用真实和随机网络进行的实验结果表明,该提出的方法平均在71%的病例中超过了71%的单阶段播种。知道时间网络是建模动态过程的适当选择,可以将这项工作的结果解释为鼓励对现实世界中的临时顺序播种,尤其是知道可以通过使用此工作中引入的种子激活策略来实现更复杂的种子选择策略。

The spread of influence in networks is a topic of great importance in many application areas. For instance, one would like to maximise the coverage, limiting the budget for marketing campaign initialisation and use the potential of social influence. To tackle this and similar challenges, more than a decade ago, researchers started to investigate the influence maximisation problem. The challenge is to find the best set of initially activated seed nodes in order to maximise the influence spread in networks. In typical approach we will activate all seeds in single stage, at the beginning of the process, while in this work we introduce and evaluate a new approach for seeds activation in temporal networks based on sequential seeding. Instead of activating all nodes at the same time, this method distributes the activations of seeds, leading to higher ranges of influence spread. The results of experiments performed using real and randomised networks demonstrate that the proposed method outperforms single stage seeding in 71% of cases by nearly 6% on average. Knowing that temporal networks are an adequate choice for modelling dynamic processes, the results of this work can be interpreted as encouraging to apply temporal sequential seeding for real world cases, especially knowing that more sophisticated seed selection strategies can be implemented by using the seed activation strategy introduced in this work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源