论文标题
学习从单词到句子的通用表示
Learning Universal Representations from Word to Sentence
论文作者
论文摘要
尽管对语言进行了完善的剪裁表示学习,但大多数语言表示模型通常集中在特定的语言单元上,这在面对以统一的方式处理多层语言对象时会带来极大的不便。因此,这项工作介绍并探讨了通用表示学习,即通过独立于任务的评估,在统一向量空间中不同级别的语言单元的嵌入。我们介绍了用单词,短语和句子来构建类比数据集的方法,并试验了多个表示模型,以检查学习向量空间的几何特性。然后,我们凭经验验证了与适当的训练设置合并的经过良好训练的变压器模型可能有效地产生通用表示。尤其是,我们在NLI和PPDB数据集上实施微调Albert,在不同语言级别的类比任务上实现了最高的准确性。有关保险常见问题解答任务的进一步实验显示了通用表示模型在现实世界应用中的有效性。
Despite the well-developed cut-edge representation learning for language, most language representation models usually focus on specific level of linguistic unit, which cause great inconvenience when being confronted with handling multiple layers of linguistic objects in a unified way. Thus this work introduces and explores the universal representation learning, i.e., embeddings of different levels of linguistic unit in a uniform vector space through a task-independent evaluation. We present our approach of constructing analogy datasets in terms of words, phrases and sentences and experiment with multiple representation models to examine geometric properties of the learned vector space. Then we empirically verify that well pre-trained Transformer models incorporated with appropriate training settings may effectively yield universal representation. Especially, our implementation of fine-tuning ALBERT on NLI and PPDB datasets achieves the highest accuracy on analogy tasks in different language levels. Further experiments on the insurance FAQ task show effectiveness of universal representation models in real-world applications.