论文标题

智能视频分析的关键点序列无损压缩

Key-Point Sequence Lossless Compression for Intelligent Video Analysis

论文作者

Lin, Weiyao, He, Xiaoyi, Dai, Wenrui, See, John, Shinde, Tushar, Xiong, Hongkai, Duan, Lingyu

论文摘要

最近已经考虑使用功能编码来促进城市计算的智能视频分析。前端中提取的功能不是原始视频,而是将其编码并传输到后端以进行进一步处理。在本文中,我们提出了一种无损密钥序列压缩方法,用于有效的特征编码。这种预测和编码策略的本质是消除视频中关键点的空间和时间冗余。提出了具有自适应模式选择方法的多个预测模式,以处理具有各种结构和运动的关键点序列。实验结果验证了在视频分析中,提出的方案对四种广泛使用的关键点序列的有效性。

Feature coding has been recently considered to facilitate intelligent video analysis for urban computing. Instead of raw videos, extracted features in the front-end are encoded and transmitted to the back-end for further processing. In this article, we present a lossless key-point sequence compression approach for efficient feature coding. The essence of this predict-and-encode strategy is to eliminate the spatial and temporal redundancies of key points in videos. Multiple prediction modes with an adaptive mode selection method are proposed to handle key-point sequences with various structures and motion. Experimental results validate the effectiveness of the proposed scheme on four types of widely used key-point sequences in video analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源