论文标题

基于深卷积神经网络的非接触实时眼目光映射系统

Non-contact Real time Eye Gaze Mapping System Based on Deep Convolutional Neural Network

论文作者

Ahn, Hoyeon

论文摘要

人类计算机互动(HCI)是研究人类用户与计算机系统之间相互作用的领域。随着HCI的发展,个人或人群可以使用各种数字技术来实现最佳的用户体验。人类的视觉关注和视觉智力与认知科学,心理学和营销信息学有关,并用于HCI的各种应用中。凝视识别与HCI领域密切相关,因为它有意义,因为它可以增强对基本人类行为的理解。我们可以通过凝视匹配方法获得可靠的视觉关注,该方法找到用户盯着的区域。在以前的方法中,用户戴着眼镜型设备,该设备的形式配备了凝视跟踪功能,并在有限的显示器区域内执行凝视跟踪。同样,在用户的姿势固定时,执行有限范围内的凝视估计。我们克服了本文中先前方法的物理局限性,并提出了适用于现实世界环境中的非接触式凝视映射系统。此外,我们介绍了GIST凝视映射(GGM)数据集,这是一个旨在学习和评估目光映射的目光映射数据集。

Human-Computer Interaction(HCI) is a field that studies interactions between human users and computer systems. With the development of HCI, individuals or groups of people can use various digital technologies to achieve the optimal user experience. Human visual attention and visual intelligence are related to cognitive science, psychology, and marketing informatics, and are used in various applications of HCI. Gaze recognition is closely related to the HCI field because it is meaningful in that it can enhance understanding of basic human behavior. We can obtain reliable visual attention by the Gaze Matching method that finds the area the user is staring at. In the previous methods, the user wears a glasses-type device which in the form of glasses equipped with a gaze tracking function and performs gaze tracking within a limited monitor area. Also, the gaze estimation within a limited range is performed while the user's posture is fixed. We overcome the physical limitations of the previous method in this paper and propose a non-contact gaze mapping system applicable in real-world environments. In addition, we introduce the GIST Gaze Mapping (GGM) dataset, a Gaze mapping dataset created to learn and evaluate gaze mapping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源