论文标题
处方des feuilles des laminations:retour surunthéorèmedeCandel
Prescription de courbure des feuilles des laminations: retour sur un théorème de Candel
论文作者
论文摘要
在本文中,我们通过烛台重新审视了著名的定理,我们通过证明双曲线表面紧凑的层压来概括,叶子内部的每个负函数在相应的共同类别中独特的层压度度量的曲率函数是每个负函数。我们将此结果解释为对所谓的Cheeger-Gromov拓扑中某些椭圆形PDE的解决方案在完整尖的Riemannian歧管的空间上的连续性结果。
In the present paper, we revisit a famous theorem by Candel that we generalize by proving that given a compact lamination by hyperbolic surfaces, every negative function smooth inside the leaves and transversally continuous is the curvature function of a unique laminated metric in the corresponding conformal class. We give an interpretation of this result as a continuity result about the solutions of some elliptic PDEs in the so called Cheeger-Gromov topology on the space of complete pointed riemannian manifolds.