论文标题

GPU加速机器学习推论作为中微子实验中计算的服务

GPU-accelerated machine learning inference as a service for computing in neutrino experiments

论文作者

Wang, Michael, Yang, Tingjun, Flechas, Maria Acosta, Harris, Philip, Hawks, Benjamin, Holzman, Burt, Knoepfel, Kyle, Krupa, Jeffrey, Pedro, Kevin, Tran, Nhan

论文摘要

在基于加速器的中微子实验中,机器学习算法在重建事件中变得越来越普遍。这些复杂的算法在计算上可能很昂贵。同时,此类实验的数据量正在迅速增加。通过许多机器学习算法推论来处理数十亿个中微子事件的需求引发了计算挑战。我们探索了一个计算模型,其中与GPU协处理器一起以Web服务提供了异质计算。可以有效和弹性地部署协处理器,以为给定的处理任务提供适量的计算。借助我们的方法,我们用于优化协处理器的网络推断(Sonic),我们专门集成了用于Protodune-SP重建链的GPU加速度,而不会破坏本机计算工作流程。借助我们的集成框架,我们加速了最耗时的任务,轨道和粒子淋浴识别的识别,为17倍。与仅CPU生产相比,总处理时间减少了2.7倍。对于此特定任务,每68个CPU线程只需要1个GPU,提供具有成本效益的解决方案。

Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These sophisticated algorithms can be computationally expensive. At the same time, the data volumes of such experiments are rapidly increasing. The demand to process billions of neutrino events with many machine learning algorithm inferences creates a computing challenge. We explore a computing model in which heterogeneous computing with GPU coprocessors is made available as a web service. The coprocessors can be efficiently and elastically deployed to provide the right amount of computing for a given processing task. With our approach, Services for Optimized Network Inference on Coprocessors (SONIC), we integrate GPU acceleration specifically for the ProtoDUNE-SP reconstruction chain without disrupting the native computing workflow. With our integrated framework, we accelerate the most time-consuming task, track and particle shower hit identification, by a factor of 17. This results in a factor of 2.7 reduction in the total processing time when compared with CPU-only production. For this particular task, only 1 GPU is required for every 68 CPU threads, providing a cost-effective solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源