论文标题

头圆锥梁CT系统中的头膜合成和具有里程碑意义的检测

Cephalogram Synthesis and Landmark Detection in Dental Cone-Beam CT Systems

论文作者

Huang, Yixing, Fan, Fuxin, Syben, Christopher, Roser, Philipp, Mill, Leonid, Maier, Andreas

论文摘要

由于缺乏标准化的3D头皮分析方法,因此从3D锥束计算机断层扫描(CBCT)合成的2D头膜图被广泛用于牙科CBCT系统中的头形测量学分析。但是,与常规的X射线膜头膜相比,这种合成的头形图缺乏图像对比度和分辨率。此外,扫描过程中3D重建的辐射剂量会引起潜在的健康风险。在这项工作中,我们提出了一种基于Sigmoid的强度变换,该强度变换使用X射线膜的非线性光学特性来增加合成头构图的图像对比度。为了改善图像分辨率,研究了超级分辨率深度学习技术。出于低剂量目的,为直接从两个CBCT投影直接从两个CBCT投影中提出了针对像素到像素的生成对抗网络(PIX2PIXGAN)。为了在合成头图中进行具有里程碑意义的检测,提出了一种使用LENET-5和RESNET50组合的有效自动地标检测方法。我们的实验证明了Pix2PixGAN在2D头膜合成中的功效,在33.8方面达到了33.8的平均峰值信噪比(PSNR)值,参考了由3D CBCT体积合成的头符号。 PIX2PIXGAN还可以在超级分辨率方面取得最佳性能,而无需引入棋盘或锯齿状文物,平均PSNR值为32.5。我们提出的自动地标检测方法在ISBI Test1数据上可与最新方法相媲美的2 mM临床可接受范围中达到了86.7%的成功检测率。对常规头形图训练的方法可以直接应用于合成头图中的具有里程碑意义的检测,分别在4 mM精度范围内实现93.0%和80.7%的成功检测率,分别从3D体积和2D项目中实现了合成的头膜。

Due to the lack of standardized 3D cephalometric analytic methodology, 2D cephalograms synthesized from 3D cone-beam computed tomography (CBCT) volumes are widely used for cephalometric analysis in dental CBCT systems. However, compared with conventional X-ray film based cephalograms, such synthetic cephalograms lack image contrast and resolution. In addition, the radiation dose during the scan for 3D reconstruction causes potential health risks. In this work, we propose a sigmoid-based intensity transform that uses the nonlinear optical property of X-ray films to increase image contrast of synthetic cephalograms. To improve image resolution, super resolution deep learning techniques are investigated. For low dose purpose, the pixel-to-pixel generative adversarial network (pix2pixGAN) is proposed for 2D cephalogram synthesis directly from two CBCT projections. For landmark detection in the synthetic cephalograms, an efficient automatic landmark detection method using the combination of LeNet-5 and ResNet50 is proposed. Our experiments demonstrate the efficacy of pix2pixGAN in 2D cephalogram synthesis, achieving an average peak signal-to-noise ratio (PSNR) value of 33.8 with reference to the cephalograms synthesized from 3D CBCT volumes. Pix2pixGAN also achieves the best performance in super resolution, achieving an average PSNR value of 32.5 without the introduction of checkerboard or jagging artifacts. Our proposed automatic landmark detection method achieves 86.7% successful detection rate in the 2 mm clinical acceptable range on the ISBI Test1 data, which is comparable to the state-of-the-art methods. The method trained on conventional cephalograms can be directly applied to landmark detection in the synthetic cephalograms, achieving 93.0% and 80.7% successful detection rate in 4 mm precision range for synthetic cephalograms from 3D volumes and 2D projections respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源