论文标题

基于伪谱时间域算法的两流体等离子体模型的简单求解器

A simple solver for the two-fluid plasma model based on PseudoSpectral Time-Domain algorithm

论文作者

Morel, B., Giust, R., Ardaneh, K., Courvoisier, F.

论文摘要

我们提出了3D两流体等离子体模型的求解器,以模拟短脉冲激光与等离子体的相互作用。该求解器可以通过理想的气体闭合解析两流体等离子体模型的方程。我们还包括Bhatnagar-krook碰撞模型。我们的求解器基于伪时间时间域(PSTD)方法来求解麦克斯韦的卷曲方程。我们使用strang拆分将Euler方程集成到源术语中:虽然Euler方程是通过混合Lax-Friedrichs和Lax-Wendroff方案的复合方案求解的,但源项与第四阶Runge-Kutta方案集成在一起。这种两流体的等离子体模型求解器非常易于实现,因为它仅依赖于有限的差异方案和快速的傅立叶变换。它不需要空间交错的网格。该求解器已针对血浆物理学的几个众所周知的问题进行了测试。数值模拟使结果与分析解决方案或文献的先前结果具有很好的一致性。

We present a solver of 3D two-fluid plasma model for the simulation of short-pulse laser interactions with plasma. This solver resolves the equations of the two-fluid plasma model with ideal gas closure. We also include the Bhatnagar-Gross-Krook collision model. Our solver is based on PseudoSpectral Time-Domain (PSTD) method to solve Maxwell's curl equations. We use a Strang splitting to integrate Euler equations with source term: while Euler equations are solved with a composite scheme mixing Lax-Friedrichs and Lax-Wendroff schemes, the source term is integrated with a fourth-order Runge-Kutta scheme. This two-fluid plasma model solver is simple to implement because it only relies on finite difference schemes and Fast Fourier Transforms. It does not require spatially staggered grids. The solver was tested against several well-known problems of plasma physics. Numerical simulations gave results in excellent agreement with analytical solutions or with previous results from the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源