论文标题
使用矩阵分解方法迈向大型商业数据集的业务分析师的预测技术
Towards forecast techniques for business analysts of large commercial data sets using matrix factorization methods
论文作者
论文摘要
这篇研究文章表明,使用矩阵完成技术将需求计划者暴露于预测方法方面有重大好处。这项研究旨在通过关注具有层次结构的大型商业数据集的维度来更好地理解通过多元时间序列预测的预测领域。这项研究强调,该子领域的学术研究既没有足够的学术研究,也没有在商业领域的从业者进行传播。这项研究试图通过提出一种矩阵完成方法来创新,以预测相关商业问题的时间序列数据。尽管计算密集型,但此方法的表现优于最新技术,同时企业用户仍然可以访问。研究的对象是行业内大数据上下文中时间序列的矩阵完成。这项研究的主题是使用技术需求进行预测的产品需求,用于多元分层时间序列预测,这些预测既是非技术商业专家既精确又可以访问的。除了进行方法论创新外,该研究还旨在将从业人员介绍给层次多元时间序列预测的新方法。对于需要精确预测但缺乏适当的人力资本来开发这些预测的组织,研究结果令人感兴趣。
This research article suggests that there are significant benefits in exposing demand planners to forecasting methods using matrix completion techniques. This study aims to contribute to a better understanding of the field of forecasting with multivariate time series prediction by focusing on the dimension of large commercial data sets with hierarchies. This research highlights that there has neither been sufficient academic research in this sub-field nor dissemination among practitioners in the business sector. This study seeks to innovate by presenting a matrix completion method for short-term demand forecast of time series data on relevant commercial problems. Albeit computing intensive, this method outperforms the state of the art while remaining accessible to business users. The object of research is matrix completion for time series in a big data context within the industry. The subject of the research is forecasting product demand using techniques for multivariate hierarchical time series prediction that are both precise and accessible to non-technical business experts. Apart from a methodological innovation, this research seeks to introduce practitioners to novel methods for hierarchical multivariate time series prediction. The research outcome is of interest for organizations requiring precise forecasts yet lacking the appropriate human capital to develop them.