论文标题

对椭圆形问题的解决方案的尖锐估计值混合边界条件

Sharp estimates for solutions to elliptic problems with mixed boundary conditions

论文作者

Alvino, A., Chiacchio, F., Nitsch, C., Trombetti, C.

论文摘要

我们使用对称化技术表明,可以证明比较原理(我们主要集中在$ l^1 $比较上)与椭圆形偏微分方程之间的解决方案之间具有相当通用的边界条件$ω$的椭圆形偏微分方程,并且解决了相当通用的边界条件的解决方案,并且解决方案在与$ω$相同的球上定义的适当相关问题的解决方案。这包括例如在边界的一部分处方Dirichlet边界条件的混合问题,而Robin边界条件则在其补体中规定。

We show, using symmetrization techniques, that it is possible to prove a comparison principle (we are mainly focused on $L^1$ comparison) between solutions to an elliptic partial differential equation on a smooth bounded set $Ω$ with a rather general boundary condition, and solutions to a suitable related problem defined on a ball having the same volume as $Ω$. This includes for instance mixed problems where Dirichlet boundary conditions are prescribed on part of the boundary, while Robin boundary conditions are prescribed on its complement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源