论文标题

Leighton的定理:扩展,限制和准定理

Leighton's Theorem: extensions, limitations, and quasitrees

论文作者

Bridson, Martin R., Shepherd, Sam

论文摘要

Leighton的定理指出,如果有一个覆盖两个有限图的树$ t $ $ g_1 $和$ g_2 $,则有一个有限的图形$ \ hat g $,由$ t $覆盖,并覆盖$ g_1 $和$ g_2 $。我们证明,此结果不会扩展到树木以外的其他图。即使准材料的自动形态群包含均匀的晶格,也不会通过准确延伸到非规范的覆盖层。但这确实扩展到了准列赛的常规覆盖范围。

Leighton's Theorem states that if there is a tree $T$ that covers two finite graphs $G_1$ and $G_2$, then there is a finite graph $\hat G$ that is covered by $T$ and covers both $G_1$ and $G_2$. We prove that this result does not extend to regular covers by graphs other than trees. Nor does it extend to non-regular covers by a quasitree, even if the automorphism group of the quasitree contains a uniform lattice. But it does extend to regular coverings by quasitrees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源