论文标题
相位振荡器的低维动力学由cauchy噪声驱动
Low-dimensional dynamics of phase oscillators driven by Cauchy noise
论文作者
论文摘要
已知具有全球正弦耦合的相位振荡器系统表现出低维动力学。在本文中,此类特性扩展到了由Cauchy噪声驱动的相位振荡器系统。在本研究中,低维动力解决方案与噪声驱动相振荡器的数值模拟很好地吻合。具有考奇噪声的相同振荡器的低维动力学与库奇(Cauchy)分布的固有频率的异质振荡器的振荡器相吻合。这允许研究噪声驱动的相同振荡器系统通过异质振荡器而没有噪声,反之亦然。
Phase oscillator systems with global sine-coupling are known to exhibit low-dimensional dynamics. In this paper, such characteristics are extended to phase oscillator systems driven by Cauchy noise. The low-dimensional dynamics solution agreed well with the numerical simulations of noise-driven phase oscillators in the present study. The low-dimensional dynamics of identical oscillators with Cauchy noise coincided with those of heterogeneous oscillators with Cauchy-distributed natural frequencies. This allows for the study of noise-driven identical oscillator systems through heterogeneous oscillators without noise and vice versa.