论文标题

弱的Krull Monoid代数的表征

A characterization of weakly Krull monoid algebras

论文作者

Fadinger, Victor, Windisch, Daniel

论文摘要

让$ d $为一个域,让$ s $为无扭转的单体,其商组满足了环状亚组的上升链条件。我们给出一个何时noroid代数$ d [s] $的表征。作为推论,我们会在$ d [s] $的时候获得结果。由于Chouinard的研究,广义的Krull。 El Baghdadi和Kim。此外,我们推断了Chang定理的弱货单代代数,我们表征了仿射单代代数中弱的Krull域。

Let $D$ be a domain and let $S$ be a torsion-free monoid whose quotient group satisfies the ascending chain condition on cyclic subgroups. We give a characterization of when the monoid algebra $D[S]$ is weakly Krull. As corollaries, we obtain the results on when $D[S]$ is Krull resp. generalized Krull, due to Chouinard resp. El Baghdadi and Kim. Furthermore, we deduce Chang's theorem on weakly factorial monoid algebras and we characterize the weakly Krull domains among the affine monoid algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源