论文标题
Schwarzschild黑洞状态和熵
Schwarzschild black hole states and entropies on a nice slice
论文作者
论文摘要
在这项工作中,我们在一个不错的切片上定义了量子重力状态。精美的切片提供了时空的叶状,并避免了强曲率的区域。我们探讨了在复杂的时间内进化后从一个不错的切片中获得的多种流形的拓扑结构和几何形状。我们计算其4D Schwarzschild黑洞的相关半经典热力学熵。尽管州可以在一个不错的切片上定义的状态并不是一个全球纯净的状态,但我们得到了与霍金的计算相似的结果。最后,我们在一个不错的切片上讨论了两个部分的纠缠熵,并评论了这项工作与复制虫孔计算的关系。
In this work, we define a quantum gravity state on a nice slice. The nice slices provide a foliation of spacetime and avoid regions of strong curvature. We explore the topology and the geometry of the manifold obtained from a nice slice after evolving it in complex time. We compute its associated semiclassical thermodynamics entropy for a 4d Schwarzschild black hole. Despite the state one can define on a nice slice is not a global pure state, remarkably, we get a similar result to Hawking's calculation. In the end, we discuss the entanglement entropy of two segments on a nice slice and comment on the relation of this work with the replica wormhole calculation.