论文标题

Green的二阶抛物线方程的功能具有单数较低阶系系数

Green's function for second order parabolic equations with singular lower order coefficients

论文作者

Kim, Seick, Xu, Longjuan

论文摘要

我们构建格林的功能,以构建形式的二阶抛物面操作员$ pu = \ partial_t u- {\ rm div}({{\ bf a} \ nabla u++ boldsymbol {b} u {b} u)+ \ boldsymbol是$ \ mathbb {r}^n $中的开放连接集。不必将$ω$限制为$ω$,$ω= \ mathbb {r}^n $不排除在外。我们假设领先的系数$ \ bf a $是有界和可测量的,较低阶系系数$ \ boldsymbol {b} $,$ \ boldsymbol {c} $,$ d $属于关键的混合混合混合的norm lebesgue lebesgue lebesgue lebesgue lebesgue lebesgue空间,并满足条件$ d- {\ rm div} $ div} \ ge boldsymbol&ge bolbol { div}(\ boldsymbol {b} - \ boldsymbol {c})\ ge 0 $。我们表明,绿色的功能在整个$( - \ infty,\ infty)\ timesω$中具有高斯绑定。

We construct Green's functions for second order parabolic operators of the form $Pu=\partial_t u-{\rm div}({\bf A} \nabla u+ \boldsymbol{b}u)+ \boldsymbol{c} \cdot \nabla u+du$ in $(-\infty, \infty) \times Ω$, where $Ω$ is an open connected set in $\mathbb{R}^n$. It is not necessary that $Ω$ to be bounded and $Ω= \mathbb{R}^n$ is not excluded. We assume that the leading coefficients $\bf A$ are bounded and measurable and the lower order coefficients $\boldsymbol{b}$, $\boldsymbol{c}$, and $d$ belong to critical mixed norm Lebesgue spaces and satisfy the conditions $d-{\rm div} \boldsymbol{b} \ge 0$ and ${\rm div}(\boldsymbol{b}-\boldsymbol{c}) \ge 0$. We show that the Green's function has the Gaussian bound in the entire $(-\infty, \infty) \times Ω$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源