论文标题

覆盖网络的时间最佳构建

Time-Optimal Construction of Overlay Networks

论文作者

Götte, Thorsten, Hinnenthal, Kristian, Scheideler, Christian, Werthmann, Julian

论文摘要

我们展示了如何从任意弱连接的图形开始构建时间$ o(\ log n)$的恒定度和直径$ o(\ log n)$的叠加网络。我们假设一个同步通信网络可以在其中节点向他们知道标识符的节点发送消息,并且可以通过发送节点标识符来建立新的连接。如果初始网络的图是较弱的连接并且具有恒定度,则我们的算法将在每个回合中每回合发送和接收到$ O(\ log n)$消息的每个节点在时间$ o(\ log n)$,W.H.P.中仅接收$ O(\ log n)$消息,而当前最佳$ o(\ log log o(\ log log^{3/2} n)$ time al al al [gorith] Sirocco'19]。由于无法通过使用$ O(\ log n)$ roughs的指针跳跃(甚至需要每个节点来传达$ω(n)$位)来解决问题,因此我们的算法在渐近上是最佳的。我们通过使用短随机步行来重复建立节点之间的随机连接来实现这一加速,从而使用[Kwok和Lau,约14]的观察来快速降低图的电导率。此外,我们展示了如何使用算法来有效地解决\ emph {hybrid Networks} [Augustine等,Soda'20]中的图形问题。在节点具有两种不同的通信模式的想法中,我们假设\ emph {初始}边缘的通信是不受限制的,而只有多个偏移术的信息才能通过在整个算法执行过程中建立的边缘进行传达。对于具有任意程度的(无方向的)图$ g $,我们显示如何计算连接的组件,一个生成树和双连接组件,以时$ o(\ log n)$,w.h.p。此外,我们展示了如何计算时间$ o(\ log d + \ log \ log n)$,w.h.p。,其中$ d $是$ g $的初始度。

We show how to construct an overlay network of constant degree and diameter $O(\log n)$ in time $O(\log n)$ starting from an arbitrary weakly connected graph. We assume a synchronous communication network in which nodes can send messages to nodes they know the identifier of, and new connections can be established by sending node identifiers. If the initial network's graph is weakly connected and has constant degree, then our algorithm constructs the desired topology with each node sending and receiving only $O(\log n)$ messages in each round in time $O(\log n)$, w.h.p., which beats the currently best $O(\log^{3/2} n)$ time algorithm of [Götte et al., SIROCCO'19]. Since the problem cannot be solved faster than by using pointer jumping for $O(\log n)$ rounds (which would even require each node to communicate $Ω(n)$ bits), our algorithm is asymptotically optimal. We achieve this speedup by using short random walks to repeatedly establish random connections between the nodes that quickly reduce the conductance of the graph using an observation of [Kwok and Lau, APPROX'14]. Additionally, we show how our algorithm can be used to efficiently solve graph problems in \emph{hybrid networks} [Augustine et al., SODA'20]. Motivated by the idea that nodes possess two different modes of communication, we assume that communication of the \emph{initial} edges is unrestricted, whereas only polylogarithmically many messages can be communicated over edges that have been established throughout an algorithm's execution. For an (undirected) graph $G$ with arbitrary degree, we show how to compute connected components, a spanning tree, and biconnected components in time $O(\log n)$, w.h.p. Furthermore, we show how to compute an MIS in time $O(\log d + \log \log n)$, w.h.p., where $d$ is the initial degree of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源