论文标题
术中肝表面完成图形卷积VAE
Intraoperative Liver Surface Completion with Graph Convolutional VAE
论文作者
论文摘要
在这项工作中,我们提出了一种基于几何深度学习的方法,以预测肝脏的完整表面,鉴于在手术腹腔镜手术过程中获得的器官的部分点云。我们介绍了一种新的数据增强技术,该技术将其随机变形的频域形成,以补偿我们数据集的有限尺寸。我们方法的核心是一种差异自动编码器(VAE),训练以学习一个潜在空间以使肝脏的完整形状。在推理时,模型的生成部分嵌入到优化过程中,其中潜在表示迭代地更新以生成与术中局部偏点云相匹配的模型。这种优化的效果是对最初产生的形状的进行性非刚性变形。我们的方法对实际数据进行了定性评估,并对合成数据进行了定量评估。我们与最新的刚性注册算法进行了比较,即我们的方法在可见区域的表现优于。
In this work we propose a method based on geometric deep learning to predict the complete surface of the liver, given a partial point cloud of the organ obtained during the surgical laparoscopic procedure. We introduce a new data augmentation technique that randomly perturbs shapes in their frequency domain to compensate the limited size of our dataset. The core of our method is a variational autoencoder (VAE) that is trained to learn a latent space for complete shapes of the liver. At inference time, the generative part of the model is embedded in an optimisation procedure where the latent representation is iteratively updated to generate a model that matches the intraoperative partial point cloud. The effect of this optimisation is a progressive non-rigid deformation of the initially generated shape. Our method is qualitatively evaluated on real data and quantitatively evaluated on synthetic data. We compared with a state-of-the-art rigid registration algorithm, that our method outperformed in visible areas.