论文标题
量子现象学重力动力学:时空热力学的一般视图
Quantum phenomenological gravitational dynamics: A general view from thermodynamics of spacetime
论文作者
论文摘要
在这项工作中,我们得出了重力动力学的一般量子现象学方程并分析其特征。该推导使用时空中开发的形式主义,并引入了低能量子重力修饰。通过在该区域的额外对数期限对Bekenstein熵的修饰来考虑量子重力效应。通过几种量子重力的方法来预测这种修饰,包括环量子重力,弦理论,AD/CFT对应关系和广义不确定性原理现象学,从而使我们的结果具有一般特征。派生的方程概括了非模块性重力运动的经典运动方程,而不是一般相对论,它们最多包含度量的第二个衍生物。我们基于局部因果钻石的热力学提供了两个独立的方程推导。第一个使用雅各布森的最大真空纠缠假设,第二个克劳西乌斯熵通量。此外,我们考虑了由此产生的动力学的差异性和局部洛伦兹不变性的问题,并讨论了其在简单的宇宙学模型中的应用,发现了经典奇异性的解决方案。
In this work we derive general quantum phenomenological equations of gravitational dynamics and analyse its features. The derivation uses the formalism developed in thermodynamics of spacetime and introduces low energy quantum gravity modifications to it. Quantum gravity effects are considered via modification of Bekenstein entropy by an extra logarithmic term in the area. This modification is predicted by several approaches to quantum gravity, including loop quantum gravity, string theory, AdS/CFT correspondence and generalised uncertainty principle phenomenology, giving our result a general character. The derived equations generalise classical equations of motion of unimodular gravity, instead of the ones of general relativity, and they contain at most second derivatives of the metric. We provide two independent derivations of the equations based on thermodynamics of local causal diamonds. First one uses Jacobson's maximal vacuum entanglement hypothesis, the second one Clausius entropy flux. Furthermore, we consider questions of diffeomorphism and local Lorentz invariance of the resulting dynamics and discuss its application to a simple cosmological model, finding a resolution of the classical singularity.