论文标题
具有任意局部希尔伯特空间维度
Ergodic and non-ergodic dual-unitary quantum circuits with arbitrary local Hilbert space dimension
论文作者
论文摘要
双单位量子电路可用于构建1+1个维晶格模型,该模型可以明确计算局部可观察物的动态相关性。我们展示了如何以任何所需水平的(非)牙齿级别构建双统一回路的分析类别,以实现当地希尔伯特空间的任何维度,并为无限型吉布斯州(Ergodic)和普遍的Gibbs Ensement(非技术)(非技术)进行热化的分析结果。它显示了如何将可调的麦迪诱导扰动添加到非共性电路中而不会破坏双重非军事,从而导致局部可观察物的能力降低静态化。
Dual-unitary quantum circuits can be used to construct 1+1 dimensional lattice models for which dynamical correlations of local observables can be explicitly calculated. We show how to analytically construct classes of dual-unitary circuits with any desired level of (non-)ergodicity for any dimension of the local Hilbert space, and present analytical results for thermalization to an infinite-temperature Gibbs state (ergodic) and a generalized Gibbs ensemble (non-ergodic). It is shown how a tunable ergodicity-inducing perturbation can be added to a non-ergodic circuit without breaking dual-unitarity, leading to the appearance of prethermalization plateaux for local observables.