论文标题
从当地的牛顿限制中得出Schwarzschild解决方案
Deriving the Schwarzschild solution from a local Newtonian limit
论文作者
论文摘要
Schwarzschild指标的得出的方式不需要熟悉差异几何形式的形式,而不是解释一般时空度量的能力。因此,该推导适用于一般相对论的本科课程。该派生使用尤其适合这种情况的输入坐标,以及以Baez和Bunn引入的简单形式的爱因斯坦方程。真空爱因斯坦方程的那个版本对应于需要特定的纽顿局部限制:从一阶开始,自由下降的“测试球”的变形,最初是在及子上的测试粒子受牛顿引力的潮汐力支配。
The Schwarzschild metric is derived in a manner that does not require familiarity with the formalism of differential geometry beyond the ability to interpret a general spacetime metric. As such, the derivation is suitable for an undergraduate course on general relativity. The derivation uses infalling coordinates that are particularly well adapted to the situation, as well as Einstein's equation in the simple form introduced by Baez and Bunn. That version of the vacuum Einstein equations corresponds to requiring a particular local Newtonian limit: that, to first order, the deformation of a "test ball" of freely falling, initially-at-rest test particles is governed by the tidal forces of Newtonian gravity.