论文标题

使用Rydberg原子的介观集成优化的几何量子计算

Optimized Geometric Quantum Computation with mesoscopic ensemble of Rydberg Atoms

论文作者

Guo, Chen-Yue, Yan, L. -L., Zhang, Shou, Su, Shi-Lei, Li, Weibin

论文摘要

我们提出了一种非绝热的非亚洲几何量子操作方案,以实现使用中镜Rydberg原子的通用量子计算。单个控制原子通过rydberg状态之间的远距离相互作用纠缠目标原子的介质集合。从理论上讲,我们证明了在理想情况下,单值和两数Qubit的量子门都可以在99.9%的高度或以上达到99.9%的高忠诚度。此外,为了解决Rydberg Atom and Ensemble中RABI频率波动(RABI误差)的实验问题,我们将基于动态不变的零系统 - 错误灵敏度(ZSS)最佳控制理论应用于提议的方案。我们的数值模拟表明,即使栅极激光器的Rabi频率获得10%波动,单个集合量子标筒门的平均忠诚度可能为99.98%,而两Q Qubit Gate的平均保真度也可能为99.94%。我们还发现,优化方案还可以减少由高阶扰动项引起的误差,从而导致集合原子的哈密顿量。为了解决Rydberg合奏中基态和Rydberg水平之间的破坏性误差的实验问题,我们在Rydberg和地面之间引入了一个分散耦合方案,基于Rydberg State的绝热丢弃了Rydberg State。数值模拟表明量子门已增强。通过将强大的Rydberg Atom相互作用,非绝热几何量子计算,动力不变和最佳控制理论结合在一起,我们的方案显示了一种新的途径,以使用介镜原子结合体构建快速,稳健的量子门。我们的研究有助于持续的努力在开发量子信息处理的过程中,rydberg原子被困在光学晶格或镊子阵列中。

We propose a nonadiabatic non-Abelian geometric quantum operation scheme to realize universal quantum computation with mesoscopic Rydberg atoms. A single control atom entangles a mesoscopic ensemble of target atoms through long-range interactions between Rydberg states. We demonstrate theoretically that both the single qubit and two-qubit quantum gates can achieve high fidelities around or above 99.9% in ideal situations. Besides, to address the experimental issue of Rabi frequency fluctuation (Rabi error) in Rydberg atom and ensemble, we apply the dynamical-invariant-based zero systematic-error sensitivity (ZSS) optimal control theory to the proposed scheme. Our numerical simulations show that the average fidelity could be 99.98% for single ensemble qubit gate and 99.94% for two-qubit gate even when the Rabi frequency of the gate laser acquires 10% fluctuations. We also find that the optimized scheme can also reduce errors caused by higher-order perturbation terms in deriving the Hamiltonian of the ensemble atoms. To address the experimental issue of decoherence error between the ground state and Rydberg levels in Rydberg ensemble, we introduce a dispersive coupling regime between Rydberg and ground levels, based on which the Rydberg state is adiabatically discarded. The numerical simulation demonstrate that the quantum gate is enhanced. By combining strong Rydberg atom interactions, nonadiabatic geometric quantum computation, dynamical invariant and optimal control theory together, our scheme shows a new route to construct fast and robust quantum gates with mesoscopic atomic ensembles. Our study contributes to the ongoing effort in developing quantum information processing with Rydberg atoms trapped in optical lattices or tweezer arrays.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源