论文标题
粗糙的WeierStrass功能和动态系统:SBR度量的平滑度
Rough Weierstrass functions and dynamical systems: the smoothness of the SBR measure
论文作者
论文摘要
我们研究了WeierStrass的功能,具有粗糙度参数$γ$连续连续与系数$ h = {\logγ}/{\ log \ frac12}。$分析访问提供与嵌入到与Baker功能的动态系统中的动态系统相关的动态系统,该功能将其函数的图形标识为全球吸引者。他们拥有稳定的歧管,托管西奈 - 博尔·劳尔(SBR)措施。我们系统地利用了相关措施的望远镜特性,以提供替代证明SBR度量的绝对连续性,以实现足够大的$γ$,具有方形积分密度。望远镜允许使用与描述稳定歧管的映射相关的流的横向参数。 SBR度量的平滑度可用于计算原始Weierstrass功能图的Hausdorff尺寸并研究其当地时代。
We investigate Weierstrass functions with roughness parameter $γ$ that are Hölder continuous with coefficient $H={\logγ}/{\log \frac12}.$ Analytical access is provided by an embedding into a dynamical system related to the baker transform where the graphs of the functions are identified as their global attractors. They possess stable manifolds hosting Sinai-Bowen-Ruelle (SBR) measures. We systematically exploit a telescoping property of associated measures to give an alternative proof of the absolute continuity of the SBR measure for large enough $γ$ with square-integrable density. Telescoping allows a macroscopic argument using the transversality of the flow related to the mapping describing the stable manifold. The smoothness of the SBR measure can be used to compute the Hausdorff dimension of the graphs of the original Weierstrass functions and investigate their local times.