论文标题

除数差异的上限

Upper bound of discrepancies of divisors computing minimal log discrepancies on surfaces

论文作者

Chen, Bingyi

论文摘要

修复一个子集$ i \ subseteq \ Mathbb r _ {> 0} $,以便$γ= \ inf \ {\ sum_ {\ sum_ {i} n_ib_i-1> 0 \ mid n_i \ in \ mathbb Z _ { We give a explicit upper bound $\ell(γ)\in O(1/γ^2)$ as $γ\to 0$, such that for any smooth surface $A$ of arbitrary characteristic with a closed point 0 and an $\mathbb R$-ideal $\mathfrak{a}$ with exponents in $I$, there always exists a prime divisor $E$ over $A$ computing the minimal log $(a,\ mathfrak {a})$在0及其日志差异$ k_e+1 \ leq \ ell(γ)$的差异。一些例子表明我们的界限是最佳的。

Fix a subset $I\subseteq \mathbb R_{>0}$ such that $γ=\inf\{ \sum_{i}n_ib_i-1>0 \mid n_i\in \mathbb Z_{\geq 0}, b_i\in I \}>0$. We give a explicit upper bound $\ell(γ)\in O(1/γ^2)$ as $γ\to 0$, such that for any smooth surface $A$ of arbitrary characteristic with a closed point 0 and an $\mathbb R$-ideal $\mathfrak{a}$ with exponents in $I$, there always exists a prime divisor $E$ over $A$ computing the minimal log discrepancy of $(A,\mathfrak{a})$ at 0 and with its log discrepancy $k_E+1\leq \ell(γ)$. Some examples indicate that our bound is optimal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源