论文标题
全向场的增强驱动Epsilon-Near-Zero波导中的巨大非线性
Omnidirectional field enhancements drive giant nonlinearities in epsilon-near-zero waveguides
论文作者
论文摘要
具有相对电介电常数的散装材料$ \ VAREPSILON $接近零的巨型Kerr非线性。但是,由于Epsilon-near-Zero材料的极端和违反直觉,因此在引导波几何形状中利用这种响应并不是一件直接的。在这里,我们通过严格计算KERR非线性系数,如何在几种不同类型的结构中利用这种材料的显着非线性性质,包括散装膜,等离子体纳米线和金属纳米量。当模态面积和组速度同时最小化时,我们发现最大的Kerr非线性响应,对应于全向场的增强。开发的物理见解将是理解和工程非线性纳米型系统的关键,具有极端的非线性,并指向新的设计范式。
Bulk materials possessing a relative electric permittivity $\varepsilon$ close to zero exhibit giant Kerr nonlinearities. However, harnessing this response in guided-wave geometries is not straightforward, due to the extreme and counter-intuitive properties of epsilon-near-zero materials. Here we investigate, through rigorous calculations of the Kerr nonlinear coefficient, how the remarkable nonlinear properties of such materials can be exploited in several different types of structures, including bulk films, plasmonic nanowires, and metal nanoapertures. We find the largest Kerr nonlinear response when both the modal area and the group velocity are simultaneously minimized, corresponding to omnidirectional field enhancement. The physical insights developed will be key for understanding and engineering nonlinear nanophotonic systems with extreme nonlinearities and point to new design paradigms.