论文标题

蒙版标签预测:半监督分类的统一消息传递模型

Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification

论文作者

Shi, Yunsheng, Huang, Zhengjie, Feng, Shikun, Zhong, Hui, Wang, Wenjin, Sun, Yu

论文摘要

图形神经网络(GNN)和标签传播算法(LPA)都是传递算法的消息,在半监督分类中取得了卓越的性能。 GNN通过神经网络执行特征传播来进行预测,而LPA则使用跨图邻接矩阵的标签传播来获得结果。但是,仍然没有有效的方法可以直接结合这两种算法。为了解决这个问题,我们提出了一个新颖的统一消息传言模型(UNIMP),该模型可以在训练和推理时间内纳入功能和标签传播。首先,UNIMP采用图形变压器网络,将功能嵌入和嵌入标签作为输入信息进行传播。其次,为了训练网络而无需过度拟合自动输入标签信息,UNIMP引入了蒙版标签预测策略,其中一定比例的输入标签信息被随机掩盖,然后预测。从概念上讲,非IMP统一特征传播和标签传播,并且在经验上是强大的。它以开放图基准(OGB)的形式获得了新的最先进的半监督分类结果。

Graph neural network (GNN) and label propagation algorithm (LPA) are both message passing algorithms, which have achieved superior performance in semi-supervised classification. GNN performs feature propagation by a neural network to make predictions, while LPA uses label propagation across graph adjacency matrix to get results. However, there is still no effective way to directly combine these two kinds of algorithms. To address this issue, we propose a novel Unified Message Passaging Model (UniMP) that can incorporate feature and label propagation at both training and inference time. First, UniMP adopts a Graph Transformer network, taking feature embedding and label embedding as input information for propagation. Second, to train the network without overfitting in self-loop input label information, UniMP introduces a masked label prediction strategy, in which some percentage of input label information are masked at random, and then predicted. UniMP conceptually unifies feature propagation and label propagation and is empirically powerful. It obtains new state-of-the-art semi-supervised classification results in Open Graph Benchmark (OGB).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源