论文标题
Schrödinger操作员在有限间隔内的光谱不对称函数的逆问题
The inverse problem for a spectral asymmetry function of the Schrödinger operator on a finite interval
论文作者
论文摘要
对于Schrödinger方程$ -D^2 u/dx^2 + q(x)u =λu$在有限的$ x $ -interval上,定义了“不对称函数” $ a(λ; q)$,这是$ 1/2 $ $ 1/2 $的整个$ 1/2 $,type $ 1 $ in $λ$中的$ 1 $。我们的主要结果确定了具有常见不对称函数的平方脉电位$ q(x)$的类别。对于任何给定的$ a(λ)$,每个Dirichlet光谱序列都有一个潜力。
For the Schrödinger equation $-d^2 u/dx^2 + q(x)u = λu$ on a finite $x$-interval, there is defined an "asymmetry function" $a(λ;q)$, which is entire of order $1/2$ and type $1$ in $λ$. Our main result identifies the classes of square-integrable potentials $q(x)$ that possess a common asymmetry function. For any given $a(λ)$, there is one potential for each Dirichlet spectral sequence.