论文标题

epointda:LIDAR点云分段的端到端模拟域的适应框架

ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework for LiDAR Point Cloud Segmentation

论文作者

Zhao, Sicheng, Wang, Yezhen, Li, Bo, Wu, Bichen, Gao, Yang, Xu, Pengfei, Darrell, Trevor, Keutzer, Kurt

论文摘要

由于其稳健而精确的距离测量值,LiDAR在自主驾驶的场景理解中起着重要作用。对LiDAR数据进行培训深神经网络(DNNS)需要大规模的点注释,这些注释既费时又昂贵。取而代之的是,模拟到现实的域适应性(SRDA)使用具有自动生成的标签的无限合成数据训练DNN,并将学习的模型传输到实际场景。 LIDAR点云分割的现有SRDA方法主要采用多阶段管道,并专注于特征级别对齐。他们需要对现实世界统计数据的事先了解,而忽略了像素级的辍学噪声间隙和不同域之间的空间特征差距。在本文中,我们提出了一个新颖的端到端框架,名为Epointda,以解决上述问题。具体而言,epointda由三个模块组成:自我监督的辍学噪声渲染,统计不变和空间适应性特征对齐以及可转移的分割学习。该关节优化使EpointDA通过明确渲染合成激光雷达的辍学噪声和在特征级别上的降低噪声来弥合像素级别的域移动,并通过在不需要现实世界统计信息的情况下将不同域之间的特征对准特征,从而在特征级别上进行掉落噪声。从合成GTA-LIDAR到Real Kitti和Semantickitti的广泛实验表明,Epointda对激光点云分割的优越性。

Due to its robust and precise distance measurements, LiDAR plays an important role in scene understanding for autonomous driving. Training deep neural networks (DNNs) on LiDAR data requires large-scale point-wise annotations, which are time-consuming and expensive to obtain. Instead, simulation-to-real domain adaptation (SRDA) trains a DNN using unlimited synthetic data with automatically generated labels and transfers the learned model to real scenarios. Existing SRDA methods for LiDAR point cloud segmentation mainly employ a multi-stage pipeline and focus on feature-level alignment. They require prior knowledge of real-world statistics and ignore the pixel-level dropout noise gap and the spatial feature gap between different domains. In this paper, we propose a novel end-to-end framework, named ePointDA, to address the above issues. Specifically, ePointDA consists of three modules: self-supervised dropout noise rendering, statistics-invariant and spatially-adaptive feature alignment, and transferable segmentation learning. The joint optimization enables ePointDA to bridge the domain shift at the pixel-level by explicitly rendering dropout noise for synthetic LiDAR and at the feature-level by spatially aligning the features between different domains, without requiring the real-world statistics. Extensive experiments adapting from synthetic GTA-LiDAR to real KITTI and SemanticKITTI demonstrate the superiority of ePointDA for LiDAR point cloud segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源