论文标题

在单个软定理下统一吸引者和非吸引通货膨胀模型

Unifying attractor and non-attractor models of inflation under a single soft theorem

论文作者

Bravo, Rafael, Palma, Gonzalo A.

论文摘要

当它们的背景是吸引子或非吸引者时,我们研究了在规范单场通货膨胀模型中局部非高斯的产生。我们表明,可以利用时空差异下的通货膨胀的不变性,以对曲率扰动的原始双光谱的挤压极限发表强大的陈述,这对慢速滚动参数中的所有顺序有效。特别是,通过忽略与长波长度模式的绝热演化(例如,在缓慢滚动和超慢倾相之间的急剧过渡中产生),我们得出了双光谱在共同移动坐标中挤压极限的一般表达。该结果包括标准的Maldacena的一致性关系(与功率谱的光谱指数成正比)以及包含功率谱的时间导数的其他术语。此外,我们表明,始终可以在保形的费米坐标中编写扰动的度量标准,而与通货膨胀背景无关是吸引者还是非吸引者,从而可以计算物理原始biseppectrum挤压极限,如局部惯性观察者所观察到的那样。我们发现,在吸引子和非吸引者方案之间没有突然过渡的情况下,可观察到的局部非高斯性被普遍抑制。我们的结果表明,大量的本地非高斯性不是非吸引者背景的一般结果。

We study the generation of local non-Gaussianity in models of canonical single field inflation when their backgrounds are either attractor or non-attractor. We show that the invariance of inflation under space-time diffeomorphisms can be exploited to make powerful statements about the squeezed limit of the primordial bispectrum of curvature perturbations, valid to all orders in slow roll parameters. In particular, by neglecting departures from the adiabatic evolution of long-wavelength modes (for instance, produced in sharp transitions between slow-roll and ultra slow-roll phases), we derive a general expression for the bispectrum's squeezed limit in co-moving coordinates. This result consists in the standard Maldacena's consistency relation (proportional to the spectral index of the power spectrum) plus additional terms containing time derivatives of the power spectrum. In addition, we show that it is always possible to write the perturbed metric in conformal Fermi coordinates, independently of whether the inflationary background is attractor or non-attractor, allowing the computation of the physical primordial bispectrum's squeezed limit as observed by local inertial observers. We find that in the absence of sudden transitions between attractor and non-attractor regimes, observable local non-Gaussianity is generically suppressed. Our results imply that large local non-Gaussianity is not a generic consequence of non-attractor backgrounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源