论文标题

矩阵形式的光谱作用

Spectral action in matrix form

论文作者

Chamseddine, Ali H., Iliopoulos, John, van Suijlekom, Walter D.

论文摘要

到目前为止,已经对动作的最终组成形式进行了非交通性几何光谱作用的量化,在该组件的最终组件形式中,在狄拉克矩阵和对称代数上的所有痕迹都均已进行。在这项工作中,为了保留形式主义的非共同几何结构,我们以矩阵形式得出了传播器和顶点的量化规则。我们表明,在有限空间的四维欧几里得歧管的产物中,结果可以以杨米尔斯理论的形式施放。我们说明了玩具电动型号的过程。

Quantization of the noncommutative geometric spectral action has so far been performed on the final component form of the action where all traces over the Dirac matrices and symmetry algebra are carried out. In this work, in order to preserve the noncommutative geometric structure of the formalism, we derive the quantization rules for propagators and vertices in matrix form. We show that the results in the case of a product of a four-dimensional Euclidean manifold by a finite space, could be cast in the form of that of a Yang-Mills theory. We illustrate the procedure for the toy electroweak model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源