论文标题

一维捕获的玻色子的可溶解系统,具有短距离相互作用

Exactly-solvable system of one-dimensional trapped bosons with short and long-range interactions

论文作者

Beau, M., Pittman, S. M., Astrakharchik, G. E., del Campo, A.

论文摘要

我们考虑一个空间维度中的接触相互作用以及库仑排斥或重力吸引力的玻色子。确切的基态能量和波函数以封闭形式与富阶相图一起鉴定出,由蒙特卡洛方法揭示,不同的方向之间的交叉。一个被困的麦圭尔量子孤子描述了有吸引力的情况。弱排斥会导致不可压缩的laughlin样流体具有平坦的密度,这是由长距离相互作用的毛taevskii方程很好地重现的。较高的排斥会引起弗里德尔振荡和最终形成Wigner晶体。

We consider trapped bosons with contact interactions as well as Coulomb repulsion or gravitational attraction in one spatial dimension. The exact ground state energy and wave function are identified in closed form together with a rich phase diagram, unveiled by Monte Carlo methods, with crossovers between different regimes. A trapped McGuire quantum soliton describes the attractive case. Weak repulsion results in an incompressible Laughlin-like fluid with flat density, well reproduced by a Gross-Pitaevskii equation with long-range interactions. Higher repulsion induces Friedel oscillation and the eventual formation of a Wigner crystal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源