论文标题
征服:开源应用程序,用于分析高内容医疗保健数据
Conquery: an open source application to analyze high content healthcare data
论文作者
论文摘要
简介:必须利用医疗保健中的大数据来实现效率和竞争力的大幅提高。特别是对患者相关数据的分析具有改善决策过程的巨大潜力。但是,当今使用的大多数分析方法是高度时间和资源的耗费。目标:提出的软件解决方案征服是一种开源软件工具,可提供高级但直观的数据分析,而无需专门的统计培训。 Conquery旨在简化医疗部门新手数据库用户的大数据分析。方法:Conquery是一个面向文档的分布式时间表数据库和分析平台。它的主要应用是非技术医学专业人员对人均病历的分析。通过将树节点拖到查询编辑器中,在征服前端实现了复杂的分析。查询通过定制的分布式查询引擎以柱式导向的方式评估。我们提出了一种自定义压缩方案,以促进使用在线计算以及预先计算的元数据和数据统计数据的低响应时间。结果:Conquery允许轻松通过层次结构导航,并使复杂的研究队列构造可以减少时间和资源的需求。相关临床队列的构建可以例证征服和查询输出的UI。结论:Conquery是一种有效,直观的开源软件,用于性能和安全数据分析,旨在支持医疗保健领域的决策过程。
Introduction: Big data in healthcare must be exploited to achieve a substantial increase in efficiency and competitiveness. Especially the analysis of patient-related data possesses huge potential to improve decision-making processes. However, most analytical approaches used today are highly time- and resource-consuming. Objectives: The presented software solution Conquery is an open-source software tool providing advanced, but intuitive data analysis without the need for specialized statistical training. Conquery aims to simplify big data analysis for novice database users in the medical sector. Methods: Conquery is a document-oriented distributed timeseries database and analysis platform. Its main application is the analysis of per-person medical records by non-technical medical professionals. Complex analyses are realized in the Conquery frontend by dragging tree nodes into the query editor. Queries are evaluated by a bespoke distributed query-engine for medical records in a column-oriented fashion. We present a custom compression scheme to facilitate low response times that uses online calculated as well as precomputed metadata and data statistics. Results: Conquery allows for easy navigation through the hierarchy and enables complex study cohort construction whilst reducing the demand on time and resources. The UI of Conquery and a query output is exemplified by the construction of a relevant clinical cohort. Conclusions: Conquery is an efficient and intuitive open-source software for performant and secure data analysis and aims at supporting decision-making processes in the healthcare sector.