论文标题
Digraphs III的末端:正常的Arborescences
Ends of digraphs III: normal arborescences
论文作者
论文摘要
在一系列三篇论文中,我们开发了一个用于Digraphs的最终空间理论。在第三篇论文中,我们介绍了无限挖掘中深度优先搜索树的概念,我们称之为正常的跨越arborescences。我们表明,正常的跨性弧菌是最终信仰的:Digraph的每个末端都由正常的跨性树木中的一射线所代表,从根部开始。我们进一步表明,这种两次射击延伸至Digraph $ d $的末端空间之间的同态形态,这可能包括末端之间的限制边缘,以及任何正常的树脂的末端空间,其限制边缘从$ d $引起。最后,我们证明了正常跨越树枝的存在的荣格型标准。
In a series of three papers we develop an end space theory for digraphs. Here in the third paper we introduce a concept of depth-first search trees in infinite digraphs, which we call normal spanning arborescences. We show that normal spanning arborescences are end-faithful: every end of the digraph is represented by exactly one ray in the normal spanning arborescence that starts from the root. We further show that this bijection extends to a homeomorphism between the end space of a digraph $D$, which may include limit edges between ends, and the end space of any normal arborescence with limit edges induced from $D$. Finally we prove a Jung-type criterion for the existence of normal spanning arborescences.