论文标题
层次组件的大规模需求预测的行业案例
An industry case of large-scale demand forecasting of hierarchical components
论文作者
论文摘要
对层次组件的需求预测对于制造至关重要。但是,它在机器学习文献中的讨论受到限制,并且该行业的判断性预测仍然存在。需求计划者需要易于理解的工具,能够提供最先进的结果。这项工作介绍了世界上最大的电子制造商之一的行业需求预测案例。它试图为实践者提供五个贡献:(1)应用于相关数据集的14种需求预测方法的基准,(2)一种数据转换技术,可与艺术的状态产生可比的结果,(3)基于矩阵分解的ARIMA的替代方法,(4)基于基于时间序列数据分析的模型选择技术和时间序列数据集(4)(4)(4)。寻求提高现有人员并提高预测准确性的组织将在这项工作中找到价值。
Demand forecasting of hierarchical components is essential in manufacturing. However, its discussion in the machine-learning literature has been limited, and judgemental forecasts remain pervasive in the industry. Demand planners require easy-to-understand tools capable of delivering state-of-the-art results. This work presents an industry case of demand forecasting at one of the largest manufacturers of electronics in the world. It seeks to support practitioners with five contributions: (1) A benchmark of fourteen demand forecast methods applied to a relevant data set, (2) A data transformation technique yielding comparable results with state of the art, (3) An alternative to ARIMA based on matrix factorization, (4) A model selection technique based on topological data analysis for time series and (5) A novel data set. Organizations seeking to up-skill existing personnel and increase forecast accuracy will find value in this work.