论文标题
误差浮标几何量子计算
Error-Resilient Floquet Geometric Quantum Computation
论文作者
论文摘要
我们提出了一种新的几何量子计算(GQC)方案,称为Floquet GQC(FGQC),其中可以通过在最近的一项研究中提出的新的非亚洲几何学相构建基于定期驱动的两级系统的错误弹性几何门,可以构建[V。V。 noviĉenko\ textit {et al},物理。修订版A 100,012127(2019)]。基于Rydberg Atoms,我们提供了通用单量门门的实现和FGQC的非平凡的两数Quit大门。通过使用数值仿真,我们在存在变质和某种类型的系统控制误差的情况下评估了FGQC Z和X门的性能。 z和x门的门保真度为$ f_ {x,\ text {goate}} \ about f_ {z,\ text {gate}}} \ oft 0.9992 $。数值结果提供了证据表明,即使存在噪声和控制不完美的情况,FGQC门也可以达到相当高的门忠诚度。此外,我们发现FGQC与全球控制误差相当强大,分析示范和数值证据均已得到。因此,这项研究迈出了重要的一步,迈出了稳健的几何量子计算。
We proposed a new geometric quantum computation (GQC) scheme, called Floquet GQC (FGQC), where error-resilient geometric gates based on periodically driven two-level systems can be constructed via a new non-Abelian geometric phase proposed in a recent study [V. Noviĉenko \textit{et al}, Phys. Rev. A 100, 012127 (2019) ]. Based on Rydberg atoms, we gave possible implementations of universal single-qubit gates and a nontrivial two-qubit gate for FGQC. By using numerical simulation, we evaluated the performance of the FGQC Z and X gates in the presence of both decoherence and a certain kind of systematic control error. The gate fidelities of the Z and X gates are $F_{X,\text{gate}}\approx F_{Z,\text{gate}}\approx 0.9992$. The numerical results provide evidence that FGQC gates can achieve fairly high gate fidelities even in the presence of noise and control imperfection. In addition, we found FGQC is robust against global control error, both analytical demonstration and numerical evidence were given. Consequently, this study makes an important step towards robust geometric quantum computation.