论文标题

通过高斯流程的信息理论元学习

Information Theoretic Meta Learning with Gaussian Processes

论文作者

Titsias, Michalis K., Ruiz, Francisco J. R., Nikoloutsopoulos, Sotirios, Galashov, Alexandre

论文摘要

我们使用信息理论概念来制定元学习;也就是说,相互信息和信息瓶颈。这个想法是学习由培训集给出的任务描述的随机表示或编码,这对于预测验证集非常有用。通过利用与互信息的变异近似,我们为元学习提供了一个通用且可拖延的框架。该框架统一了现有的基于梯度的算法,还允许我们得出新的算法。特别是,我们开发了一种基于内存的算法,该算法使用高斯进程获得非参数编码表示。我们在一些射击回归问题和四个几次分类问题上演示了我们的方法,与现有基线相比,获得了竞争精度。

We formulate meta learning using information theoretic concepts; namely, mutual information and the information bottleneck. The idea is to learn a stochastic representation or encoding of the task description, given by a training set, that is highly informative about predicting the validation set. By making use of variational approximations to the mutual information, we derive a general and tractable framework for meta learning. This framework unifies existing gradient-based algorithms and also allows us to derive new algorithms. In particular, we develop a memory-based algorithm that uses Gaussian processes to obtain non-parametric encoding representations. We demonstrate our method on a few-shot regression problem and on four few-shot classification problems, obtaining competitive accuracy when compared to existing baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源