论文标题
快速模拟平面克利福德电路
Fast simulation of planar Clifford circuits
论文作者
论文摘要
一般的量子电路可以在指数时间内经典模拟。如果它具有平面布局,则由于Markov和Shi而引起的张量网络收缩算法在其大小的平方根中具有一个运行时指数,或者在基础图的树宽度中更一般地指数。另外,戈特斯曼(Gottesman)和克尼尔(Knill)表明,如果所有大门都被限制为克利福德(Clifford),那么就有一个多项式时间模拟。我们结合了这两个想法,并表明可以利用树宽和平面性来改善Clifford电路模拟。我们的主要结果是一种经典的算法,其运行时缩放比例均为$ n^{ω/2} <n^{1.19} $,该$通过测量给定的Pauli基地中平面图状态的所有$ n $ QUBITS获得的输出分布的样品。这里$ω$是矩阵乘法指数。我们还提供具有相同渐近运行时的经典算法,该算法从平面几何形状中任何恒定深度克利福德电路的输出分布中进行采样。我们的工作通过立方运行时改善了已知的古典算法。一个关键成分是映射,鉴于某些图$ g $的树分解,它会产生一个带有镜像树分解并模仿相应图形状态的结构的Clifford电路。我们为该电路提供了经典的模拟,上面陈述了平面图的运行时,否则为$ nt^{ω-1} $提供了$ t $是树分解的宽度。我们的算法结合了两个可能具有独立利益的子例程。第一个是Gottesman-Knill模拟稳定态多头测量的矩阵矩阵时版。第二个是一种新的经典算法,用于在平面几何形状中求解$ \ mathbb {f} _2 $上的对称线性系统,从而扩展了以前的作品,该作品仅应用于类似设置中的非单向线性系统。
A general quantum circuit can be simulated classically in exponential time. If it has a planar layout, then a tensor-network contraction algorithm due to Markov and Shi has a runtime exponential in the square root of its size, or more generally exponential in the treewidth of the underlying graph. Separately, Gottesman and Knill showed that if all gates are restricted to be Clifford, then there is a polynomial time simulation. We combine these two ideas and show that treewidth and planarity can be exploited to improve Clifford circuit simulation. Our main result is a classical algorithm with runtime scaling asymptotically as $n^{ω/2}<n^{1.19}$ which samples from the output distribution obtained by measuring all $n$ qubits of a planar graph state in given Pauli bases. Here $ω$ is the matrix multiplication exponent. We also provide a classical algorithm with the same asymptotic runtime which samples from the output distribution of any constant-depth Clifford circuit in a planar geometry. Our work improves known classical algorithms with cubic runtime. A key ingredient is a mapping which, given a tree decomposition of some graph $G$, produces a Clifford circuit with a structure that mirrors the tree decomposition and which emulates measurement of the corresponding graph state. We provide a classical simulation of this circuit with the runtime stated above for planar graphs and otherwise $nt^{ω-1}$ where $t$ is the width of the tree decomposition. Our algorithm incorporates two subroutines which may be of independent interest. The first is a matrix-multiplication-time version of the Gottesman-Knill simulation of multi-qubit measurement on stabilizer states. The second is a new classical algorithm for solving symmetric linear systems over $\mathbb{F}_2$ in a planar geometry, extending previous works which only applied to non-singular linear systems in the analogous setting.