论文标题

无序浮部系统的流动方程

Flow Equations for Disordered Floquet Systems

论文作者

Thomson, S. J., Magano, D., Schiró, M.

论文摘要

在这项工作中,我们提出了一种基于流程方程的无序,定期驱动(floquet)量子多体系统的新方法。具体而言,我们在扩展的希尔伯特空间中引入了浮雕操作员的连续统一流,其固定点既是对角线又无关,从而使我们能够直接获得Floquet模式。我们首先将此方法应用于定期驱动的Anderson绝缘子,然后将其扩展到截断的流动方程式中驱动的多体局部系统。特别是,我们计算出了新兴的浮部局部运动积分,该运动表征了定期驱动的多体局部阶段。我们证明,该方法在弱相互交互的方向上仍然可以很好地控制,并使我们能够访问比通过数值精确方法访问的更大的系统大小,这为研究二维驱动的多体系统的研究铺平了道路。

In this work, we present a new approach to disordered, periodically driven (Floquet) quantum many-body systems based on flow equations. Specifically, we introduce a continuous unitary flow of Floquet operators in an extended Hilbert space, whose fixed point is both diagonal and time-independent, allowing us to directly obtain the Floquet modes. We first apply this method to a periodically driven Anderson insulator, for which it is exact, and then extend it to driven many-body localized systems within a truncated flow equation ansatz. In particular we compute the emergent Floquet local integrals of motion that characterise a periodically driven many-body localized phase. We demonstrate that the method remains well-controlled in the weakly-interacting regime, and allows us to access larger system sizes than accessible by numerically exact methods, paving the way for studies of two-dimensional driven many-body systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源