论文标题
用于Power-to-t-to-X应用的碳效率点市场日程安排的图形方法
A graphical approach to carbon-efficient spot market scheduling for Power-to-X applications
论文作者
论文摘要
在2015年的《巴黎协定》中,决定到2050年将能源部门的二氧化碳排放量降低到零,并将全球平均温度升高限制为高于工业前水平以上的1.5度。只有基于可变的可再生技术,实际上无二氧化碳发电才能实现此类承诺。从历史上看,对可再生能力的批评的主要要点是天气依赖驱动的变异性。电力对X系统将多余的电力转换为其他能源供以后使用,可以在抵消可再生能源生产的可变性方面发挥重要作用。但是,为了这样做,必须对这些系统进行适当的安排,以确保它们由低碳技术提供动力。在本文中,我们通过最大程度地减少碳排放和电力成本来提出一种图形方法,以在日益投放市场中安排电力对X植物。这种图形方法易于实施和直观地向利益相关者解释。在一项使用历史价格和四个不同国家的二氧化碳强度的仿真研究中,我们发现价格和二氧化碳强度随着时间表的增加而趋于降低。每年需要越来越多的全加载小时数时,效果会减少。此外,调查优化价格或二氧化碳强度之间的权衡表明,这确实是一个权衡:不可能同时获得最低的价格和二氧化碳强度。
In the Paris agreement of 2015, it was decided to reduce the CO2 emissions of the energy sector to zero by 2050 and to restrict the global mean temperature increase to 1.5 degree Celcius above the pre-industrial level. Such commitments are possible only with practically CO2-free power generation based on variable renewable technologies. Historically, the main point of criticism regarding renewable power is the variability driven by weather dependence. Power-to-X systems, which convert excess power to other stores of energy for later use, can play an important role in offsetting the variability of renewable power production. In order to do so, however, these systems have to be scheduled properly to ensure they are being powered by low-carbon technologies. In this paper, we introduce a graphical approach for scheduling power-to-X plants in the day-ahead market by minimizing carbon emissions and electricity costs. This graphical approach is simple to implement and intuitively explain to stakeholders. In a simulation study using historical prices and CO2 intensity for four different countries, we find that the price and CO2 intensity tends to decrease with increasing scheduling horizon. The effect diminishes when requiring an increasing amount of full load hours per year. Additionally, investigating the trade-off between optimizing for price or CO2 intensity shows that it is indeed a trade-off: it is not possible to obtain the lowest price and CO2 intensity at the same time.