论文标题

关于某些原始$ Q $ - 多种物质的同构,而不是$ p $ - 多层协会方案

On the isomorphism of certain primitive $Q$-polynomial not $P$-polynomial association schemes

论文作者

Monzillo, Giusy, Siciliano, Alessandro

论文摘要

2011年,Penttila和Williford建造了一个无限的新家族,由原始的$ Q $ - 多项式3级协会方案,不是源于距离常规图形,通过探索单一极性空间$ h(3,q^2)$,$ q $的几何形状,即使是符合符号的极性空间$ w(3,q^2)$,$ q $,均与符合性的极空$ W(3,Q $ w(3,Q 3,Q 3,3,Q)。 在与Penttila和Williford的私人沟通中,H。〜Tanaka指出,这些方案的参数与Hollmann和Hollmann和Xiang在2006年发现的3级方案相同,原因是考虑$ \ Mathrm {pgl}(pgl}(2,q^2)$,$ q $,$ q $,$ q $,$ q $偶,$ q $ co $ $ \ mathrm {pg}(2,q^2)$ extered在$ \ mathrm {pg}(2,q^4)$中。因此,出现了上述关联方案是否是同构的问题。在本文中,我们提供了积极的答案。与产品一样,我们得到了强烈规则图的同构。

In 2011, Penttila and Williford constructed an infinite new family of primitive $Q$-polynomial 3-class association schemes, not arising from distance regular graphs, by exploring the geometry of the lines of the unitary polar space $H(3,q^2)$, $q$ even, with respect to a symplectic polar space $W(3,q)$ embedded in it. In a private communication to Penttila and Williford, H.~Tanaka pointed out that these schemes have the same parameters as the 3-class schemes found by Hollmann and Xiang in 2006 by considering the action of $\mathrm{PGL}(2,q^2)$, $q$ even, on a non-degenerate conic of $\mathrm{PG}(2,q^2)$ extended in $\mathrm{PG}(2,q^4)$. Therefore, the question arises whether the above association schemes are isomorphic. In this paper we provide the positive answer. As by product, we get an isomorphism of strongly regular graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源