论文标题
Schrödinger经营者在普通树上的分散
Dispersion for Schrödinger operators on regular trees
论文作者
论文摘要
我们证明了两个模型〜:离散常规树上的邻接矩阵,以及在每个边缘/顶点上具有相同电势的公制的schrödinger方程。后一个模型可以被认为是真实线上定期施罗丁运营商的情况的扩展。我们建立了一个$ t^{ - 3/2} $ - 两种型号的衰减,因为我们给出了一阶渐近学。
We prove dispersive estimates for two models~: the adjacency matrix on a discrete regular tree, and the Schrödinger equation on a metric regular tree with the same potential on each edge/vertex. The latter model can be thought of as an extension of the case of periodic Schrödinger operators on the real line. We establish a $t^{-3/2}$-decay for both models which is sharp, as we give the first-order asymptotics.