论文标题

在不断变化的环境中退缩的地平线任务和运动计划

Receding Horizon Task and Motion Planning in Changing Environments

论文作者

Castaman, Nicola, Pagello, Enrico, Menegatti, Emanuele, Pretto, Alberto

论文摘要

复杂的操纵任务需要仔细整合符号推理和运动计划。如果工作空间是非静态的,那么这个问题通常称为任务和运动计划(TAMP),例如由于人类的干预措施并被嘈杂的非理想传感器所感知。这项工作提出了一种在线近似tamp方法,将几何推理模块和运动计划者与标准任务计划者结合在一起,以退缩的视野方式。我们的方法迭代地解决了在执行行动期间有限数量的未来操作的后退窗口中的减少计划问题。因此,仅在每次迭代中实际安排了地平线的第一个动作,然后将窗口向前移动,并再次解决了问题。此过程允许自然考虑场景中的潜在变化,同时确保运行时性能良好。我们在模拟环境中进行广泛的实验验证我们的方法。我们表明,我们的方法能够应对环境中的意外变化,同时确保在解决传统静态基准测试方面的其他tamp方法方面可比性能。我们使用本文发布我们方法的开源实现。

Complex manipulation tasks require careful integration of symbolic reasoning and motion planning. This problem, commonly referred to as Task and Motion Planning (TAMP), is even more challenging if the workspace is non-static, e.g. due to human interventions and perceived with noisy non-ideal sensors. This work proposes an online approximated TAMP method that combines a geometric reasoning module and a motion planner with a standard task planner in a receding horizon fashion. Our approach iteratively solves a reduced planning problem over a receding window of a limited number of future actions during the implementation of the actions. Thus, only the first action of the horizon is actually scheduled at each iteration, then the window is moved forward, and the problem is solved again. This procedure allows to naturally take into account potential changes in the scene while ensuring good runtime performance. We validate our approach within extensive experiments in a simulated environment. We showed that our approach is able to deal with unexpected changes in the environment while ensuring comparable performance with respect to other recent TAMP approaches in solving traditional static benchmarks. We release with this paper the open-source implementation of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源