论文标题

朝着城市规模3D点云的语义分割:数据集,基准和挑战

Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges

论文作者

Hu, Qingyong, Yang, Bo, Khalid, Sheikh, Xiao, Wen, Trigoni, Niki, Markham, Andrew

论文摘要

在3D场景理解领域中释放监督深度学习算法潜力的潜力的基本先决条件是可用的大规模且丰富的注释数据集。但是,由于数据获取和数据注释的昂贵成本,公开可用的数据集要么具有相对小的空间尺度,要么具有有限的语义注释,这严重限制了在3D点云的背景下的细粒语义理解的发展。在本文中,我们提出了一个城市规模的摄影测量点云数据集,该数据集具有近30亿个注释点,这是标记点数的三倍,是现有最大的摄影测量点云数据集的三倍。我们的数据集由来自英国三个城市的大面积组成,覆盖了城市景观的约7.6 km^2。在数据集中,每个3D点被标记为13个语义类之一。我们广泛评估了数据集上最先进的算法的性能,并对结果进行了全面分析。特别是,我们确定了对城市规模的云理解的几个关键挑战。该数据集可从https://github.com/qingyonghu/sensaturban获得。

An essential prerequisite for unleashing the potential of supervised deep learning algorithms in the area of 3D scene understanding is the availability of large-scale and richly annotated datasets. However, publicly available datasets are either in relative small spatial scales or have limited semantic annotations due to the expensive cost of data acquisition and data annotation, which severely limits the development of fine-grained semantic understanding in the context of 3D point clouds. In this paper, we present an urban-scale photogrammetric point cloud dataset with nearly three billion richly annotated points, which is three times the number of labeled points than the existing largest photogrammetric point cloud dataset. Our dataset consists of large areas from three UK cities, covering about 7.6 km^2 of the city landscape. In the dataset, each 3D point is labeled as one of 13 semantic classes. We extensively evaluate the performance of state-of-the-art algorithms on our dataset and provide a comprehensive analysis of the results. In particular, we identify several key challenges towards urban-scale point cloud understanding. The dataset is available at https://github.com/QingyongHu/SensatUrban.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源