论文标题

SARGDV:使用合成孔径雷达有效鉴定地下水依赖性植被

SARGDV: Efficient identification of groundwater-dependent vegetation using synthetic aperture radar

论文作者

Terrett, Mason, Fryer, Daniel, Doody, Tanya, Nguyen, Hien, Castellazzi, Pascal

论文摘要

地下水的耗竭影响了全球众多地下水依赖植被(GDV)的可持续性,对其为动植物,动植物提供环境和生态支持的能力带来了重大压力。采矿,农业和种植园等行业在很大程度上依赖地下水,这过度开发的风险会影响附近GDV的地下水制度,质量和可及性。具有成本效益的GDV识别方法将通过社区和工业的改进和可持续的地下水管理来对这些关键的生态系统进行战略保护。澳大利亚的合成孔径雷达(SAR)地球观测数据的最新应用证明了雷达在大规模鉴定陆地地下水依赖的生态系统的实用性。我们提出了一种强大的分类方法,以使用已加工的SAR数据产品来提高对GDV的识别,该数据适用于最新的先前方法。该方法包括开发SARGDV,这是一种二进制分类模型,该模型使用了极端梯度提升(XGBoost)算法以及由Sentinel-1 SAR SAR干涉宽图像组成的三个数据集合结合使用。这些图像是在南澳大利亚州一个地区的甘比尔山(Mount Gambier)上收集的为期一年的时间序列,该地区已知支持GDV。 SARGDV模型显示出具有77%精度,76%真实正率和96%精度的GDV分类的高性能。通过提供长期,具有成本效益的解决方案,可以使用此方法来支持全球GDV社区的保护,以通过使用可自由可用的高分辨率,全球可用的Sentinel-1 SAR数据集来识别可变区域和气候的GDV。

Groundwater depletion impacts the sustainability of numerous groundwater-dependent vegetation (GDV) globally, placing significant stress on their capacity to provide environmental and ecological support for flora, fauna, and anthropic benefits. Industries such as mining, agriculture, and plantations are heavily reliant on groundwater, the over-exploitation of which risks impacting groundwater regimes, quality, and accessibility for nearby GDVs. Cost effective methods of GDV identification will enable strategic protection of these critical ecological systems, through improved and sustainable groundwater management by communities and industry. Recent application of synthetic aperture radar (SAR) earth observation data in Australia has demonstrated the utility of radar for identifying terrestrial groundwater-dependent ecosystems at scale. We propose a robust classification method to advance identification of GDVs at scale using processed SAR data products adapted from a recent previous method. The method includes the development of SARGDV, a binary classification model, which uses the extreme gradient boosting (XGBoost) algorithm in conjunction with three data cubes composed of Sentinel-1 SAR interferometric wide images. The images were collected as a one-year time series over Mount Gambier, a region in South Australia, known to support GDVs. The SARGDV model demonstrated high performance for classifying GDVs with 77% precision, 76% true positive rate and 96% accuracy. This method may be used to support the protection of GDV communities globally by providing a long term, cost-effective solution to identify GDVs over variable regions and climates, via the use of freely available, high-resolution, globally available Sentinel-1 SAR data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源