论文标题

关于使用Navier-Stokes-Brinkman惩罚方法将障碍物纳入流体流问题

On the Incorporation of Obstacles in a Fluid Flow Problem Using a Navier-Stokes-Brinkman Penalization Approach

论文作者

Fuchsberger, Jana, Karabelas, Elias, Aigner, Philipp, Niederer, Steven, Plank, Gernot, Schima, Heinrich, Haase, Gundolf

论文摘要

模拟流体与沉浸式移动固体的相互作用在获得对流体动力学如何通过障碍物的存在以及通过移动流体在固体上施加的力来改变液体动力学的相互作用起着重要作用。此类问题出现在各种情况下,包括众多技术应用,例如涡轮机到医疗问题,例如按瓣膜调节血态药物。通常,在流体结构相互作用(FSI)框架内提出了此类问题的数值处理。一般的FSI模型能够捕获双向相互作用,但在解决和计算方面既挑战又具有挑战性。简化的方法通过实现更好的计算效率来提供可能的补救措施,以扩大要求应用问题的范围,重点是理解固体对改变流体动力学的影响。在这项研究中,我们报告了用于此类应用的新方法的开发。在我们的方法中,使用多孔介质理论的概念将刚性移动障碍物纳入流体动力学上下文中。基于Navier-Stokes-Brinkman方程,该方程增强了使用Darcy阻力术语的Navier-Stokes方程,我们的方法表示固体障碍物,因为含有多孔渗透率的多孔介质的时间变化区域。数值稳定和湍流建模是通过使用基于残余的变分多尺度公式来处理的。通过解决食品和药物管理局(FDA)提出的旋转血液泵的标准基准问题,可以证明我们方法的关键优势 - 计算效率和易于实施。通过进行网格收敛研究并与为该基准提供的广泛实验数据进行比较,证明了有效性。

Simulating the interaction of fluids with immersed moving solids is playing an important role for gaining a better quantitative understanding of how fluid dynamics is altered by the presence of obstacles and which forces are exerted on the solids by the moving fluid. Such problems appear in various contexts, ranging from numerous technical applications such as turbines to medical problems such as the regulation of hemodyamics by valves. Typically, the numerical treatment of such problems is posed within a fluid structure interaction (FSI) framework. General FSI models are able to capture bidirectional interactions, but are challenging to solve and computationally expensive. Simplified methods offer a possible remedy by achieving better computational efficiency to broaden the scope to demanding application problems with focus on understanding the effect of solids on altering fluid dynamics. In this study we report on the development of a novel method for such applications. In our method rigid moving obstacles are incorporated in a fluid dynamics context using concepts from porous media theory. Based on the Navier-Stokes-Brinkman equations which augments the Navier-Stokes equation with a Darcy drag term our method represents solid obstacles as time-varying regions containing a porous medium of vanishing permeability. Numerical stabilization and turbulence modeling is dealt with by using a residual based variational multiscale formulation. The key advantages of our approach -- computational efficiency and ease of implementation -- are demonstrated by solving a standard benchmark problem of a rotating blood pump posed by the Food and Drug Administration Agency (FDA). Validity is demonstrated by conducting a mesh convergence study and by comparison against the extensive set of experimental data provided for this benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源