论文标题

使用遗传算法优化的监督学习来捕获宣传后宣布的动态

Capturing dynamics of post-earnings-announcement drift using genetic algorithm-optimised supervised learning

论文作者

Ye, Zhengxin Joseph, Schuller, Bjorn W.

论文摘要

虽然宣传后的漂移(Pead)是研究最多的股票市场异常之一,但目前的文献通常限制在使用少数因素使用更简单的回归方法来解释这种现象时。在本文中,我们改用基于机器学习的方法,并旨在使用来自大量股票的数据以及各种基本因素和技术因素来捕获Pead Dynamics。我们的模型建立在极端梯度提升(XGBOOST)围绕,并根据1997年至2018年之间罗素1000指数的1,106家公司的季度财务公告数据列出了一长串工程输入功能。我们在Pead预测和分析上进行了许多实验,并对文献有以下贡献。首先,我们展示了如何使用机器学习方法分析地球后宣布漂移,并在在漂移方向上产生可信的预测时表明了这种方法的能力。这是第一次使用XGBoost研究PEAD动力学。我们表明,漂移方向实际上是由来自不同工业部门的股票以及不同区域的不同因素驱动的,而XGBoost有效地了解了不断变化的驱动因素。其次,我们表明,通过遗传算法优化的XGBoost可以帮助分配样本外股票,形成投资组合,其正面收益较高,而较长的负面收益较低,负面收益较低,这一发现可以在发展市场中和策略的过程中采用。第三,我们展示了理论上事件驱动的股票策略如何应对现实中不断变化的市场价格,从而降低了其效力。我们提出了一种策略,以弥补在处理Pead信号时购买转移市场的困难。

While Post-Earnings-Announcement Drift (PEAD) is one of the most studied stock market anomalies, the current literature is often limited in explaining this phenomenon by a small number of factors using simpler regression methods. In this paper, we use a machine learning based approach instead, and aim to capture the PEAD dynamics using data from a large group of stocks and a wide range of both fundamental and technical factors. Our model is built around the Extreme Gradient Boosting (XGBoost) and uses a long list of engineered input features based on quarterly financial announcement data from 1,106 companies in the Russell 1000 index between 1997 and 2018. We perform numerous experiments on PEAD predictions and analysis and have the following contributions to the literature. First, we show how Post-Earnings-Announcement Drift can be analysed using machine learning methods and demonstrate such methods' prowess in producing credible forecasting on the drift direction. It is the first time PEAD dynamics are studied using XGBoost. We show that the drift direction is in fact driven by different factors for stocks from different industrial sectors and in different quarters and XGBoost is effective in understanding the changing drivers. Second, we show that an XGBoost well optimised by a Genetic Algorithm can help allocate out-of-sample stocks to form portfolios with higher positive returns to long and portfolios with lower negative returns to short, a finding that could be adopted in the process of developing market neutral strategies. Third, we show how theoretical event-driven stock strategies have to grapple with ever changing market prices in reality, reducing their effectiveness. We present a tactic to remedy the difficulty of buying into a moving market when dealing with PEAD signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源