论文标题
从广义的Peierls-Nabarro模型的应变梯度可塑性的推导
Derivation of strain-gradient plasticity from a generalized Peierls-Nabarro model
论文作者
论文摘要
我们从平面中的非局部相位场模型中得出应变梯度可塑性。具有线性生长的连续能量取决于表征宏观脱位密度的度量和代表位错之间远场相互作用的非局部有效能,这是自然出现的,这是非局部弹性相互作用的缩放限制。基于$γ$ -Convergence的限制过程将自动纳入中间尺度上的微观结构的放松和形成。
We derive strain-gradient plasticity from a nonlocal phase-field model of dislocations in a plane. Both a continuous energy with linear growth depending on a measure which characterizes the macroscopic dislocation density and a nonlocal effective energy representing the far-field interaction between dislocations arise naturally as scaling limits of the nonlocal elastic interaction. Relaxation and formation of microstructures at intermediate scales are automatically incorporated in the limiting procedure based on $Γ$-convergence.