论文标题

用于矢量半群中亚刚性随机函数的千古定理

An ergodic theorem for subadditive random functions on vector semigroups

论文作者

Kazakevicius, Vytautas

论文摘要

令$ f =(f^x \ mid x \ in s)$,$ s \ subset \ mathbb {z}^m $,成为概率空间$(ω,\ mathsf {p})$和$ h $在$ s $上随机函数的概率空间$(ω,\ mathsf {p} $ s $ s $ s $ h(x+h(x x x y y)的实际随机功能, H(x,ω)+H(y,f^xΩ)$ for s $ in s $和$ω\inΩ$的所有$ x,y \。我们证明,存在$ q \ colon o \ to [ - \ infty; \ infty)$上定义了$ o = \ mathrm {int}(\ mathrm {cone}(s))$的$ q \ colon o \ o \ colon o \ o \ colon o \ c \ colon o \ c \ colon o \ colon o = $ q \ colon o \ c(\ mathrm {cone}(s s))$,并且存在$ w \ subSet的完整可能性的完整可能性$ h(ymathrm)对于W $中的所有$ω\,所有序列$(x_n)\子集s $带有渐近方向$ x \ in O $。此刻的时刻条件反映了Semigroup $ f $的大小,而不是$ S $的大小。但是,提出了大约$ h $的额外独立假设。

Let $f=(f^x\mid x\in S)$, $S\subset\mathbb{Z}^m$, be a semigroup of ergodic measure-preserving transformations of a probability space $(Ω,\mathsf{P})$ and $h$ a real random function on $S$, such that $h(x+y,ω)\le h(x,ω)+h(y,f^xω)$ for all $x,y\in S$ and $ω\inΩ$. We prove that there exists a sublinear function $q\colon O\to[-\infty;\infty)$ defined on $O=\mathrm{int}(\mathrm{cone}(S))$, and a set $W\subsetΩ$ of full probability, such that $h(x_n,ω)/\lvert x_n\rvert\to q(x)$ for all $ω\in W$ and all sequences $(x_n)\subset S$ with asymptotic direction $x\in O$. The moment condition for this reflects the size of the semigroup $f$, not that of $S$. However, an additional independence assumption about $h$ is made.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源